SISTEMA DE DEZ DIMENSÕES FÍSICAS DE GRACELI.
1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.
Efeito termiônico é o aumento do fluxo de elétrons que saem de um metal, devido ao aumento de temperatura. Ao aumentar-se substancialmente a temperatura do metal, há uma facilidade maior para a saída dos elétrons.
O fenômeno for inicialmente descrito em 1873 por Frederick Guthrie na Inglaterra enquanto trabalhava em experimentos com objetos carregados. Ele notou comportamentos diferenciados para esferas de metal carregadas com temperaturas muito elevadas, relativo a sua descarga.
O efeito termiônico foi acidentalmente redescoberto por Thomas Edison em 1880, enquanto tentava descobrir a razão para a ruptura de filamentos da lâmpada incandescente.
Edison construiu um bulbo com a superfície interior coberta com uma folha de metal. Conectou a folha ao filamento da lâmpada com um galvanômetro. Quando na folha foi dada uma carga mais negativa do que a do filamento, nenhuma corrente fluiu entre a folha e o filamento porque a folha fria emitiu poucos elétrons. Entretanto, quando na folha foi dada uma carga mais positiva do que a do filamento, muitos elétrons emissores do filamento quente foram atraídos à folha, fazendo com que a corrente fluisse. Este fluxo de sentido único da corrente foi chamado de efeito Edison. Edison não viu nenhum uso para este efeito, embora o patenteasse em 1883.
O físico britânico John Ambrose Fleming, descobriu que o efeito poderia ser usado para detectar ondas de rádio. Fleming trabalhou no desenvolvimento de um tubo de vácuo de dois elementos, conhecido como diodo. Owen Willans Richardson trabalhou com emissão termiônica e recebeu o prêmio Nobel em 1928 em função de seu trabalho e da lei que leva seu nome, a lei de Richardson. Em todo o metal, há um ou dois elétrons por átomo que estão livres para moverem-se de um átomo para outro. Suas velocidades seguem uma distribuição estatística, melhor que ser uniformes, e ocasionalmente um elétron terá velocidade suficiente para sair do metal sem voltar. A quantidade mínima de energia que necessária para que um elétron saia da superfície é chamada a função trabalho, e varia de metal para metal. Um revestimento fino do óxido é aplicado a superfície do metal nos tubos de vácuo para diminuir a função trabalho, pois assim é mais fácil para os elétrons deixarem a superfície do óxido.
A lei de Richardson, também chamada de equação de Richardson-Dushmann, relaciona a densidade de corrente emitida com a temperatura:
- X
- FUNÇÃO GERAL DO SISTEMA SDCTIE GRACELI.
onde 'T' é a temperatura em kelvin, 'W' é a função trabalho, 'k' é a constante de Boltzmann.
A constante de proporcionalidade 'A', conhecida como constante de Richardson, é dada por:
- A m-2 K-2
- X
- FUNÇÃO GERAL DO SISTEMA SDCTIE GRACELI.
onde 'm' e 'e' são a massa e a carga do elétron, e 'h' é a constante de Planck.
Devido à função exponencial, a corrente aumenta rapidamente com a temperatura.
O efeito termiônico é de fundamental importância na eletrônica.
Energia do fotão (português europeu) ou energia do fóton (português brasileiro) é a energia carregada por um único fóton. A quantidade de energia está diretamente relacionada à frequência e ao comprimento de onda eletromagnética do fóton. Quanto maior for a frequência do fóton, maior a sua energia. Da mesma forma, quanto maior for o comprimento de onda do fóton, menor a sua energia.
A energia do fóton é uma função somente do comprimento de onda. Outros fatores, como intensidade da radiação, não afetam a energia do fóton. Em outras palavras, dois fótons de luz com a mesma cor e, portanto, o mesmo comprimento de onda, terão a mesma energia do fóton, mesmo se um for emitido por uma vela de cera e o outro for emitido pelo Sol.
A energia do fóton pode ser representada por qualquer unidade de energia. Umas das unidades mais comuns para denotar a energia do fóton é elétron-volt (eV) e joule (bem como seus múltiplos, como microjoule). Como um joule é igual a 6,24 × 1018 eV, as unidades maiores podem ser mais úteis para denotar a energia de fótons com frequências e energias mais altas, como o raio gama, ao contrário dos fótons de menor energia, como os da região do espectro eletromagnético de radiofrequência.
Se os fótons, de fato, não possuem massa, a energia do fóton não seria relacionada à massa através da equivalência E = mc2. Os únicos dois tipos de tais partículas sem massa observados são os fótons e os glúons.[1] Entretanto, o postulado de que os fótons não possuem massa é baseado na crise que resulta de outras teorias em mecânica quântica. Para que outras teorias, como a invariância de gauge e a chamada "renormalização" sobrevivam sem considerável revisão, os fótons devem permanecer sem massa no domínio das atuais equações.[2] A alegação é contestada em outros meios.[3] Diz-se que fótons possuem massa relativística (isto é, massa resultante do movimento de um corpo material em relação a outro). Além disso, algumas hipóteses propõem que toda massa ou "massa de repouso" pode ser composta de massa relativística acumulada, secundária ao movimento, uma vez que nenhum corpo material esteja ou possa estar em "repouso" em relação a todos os campos. Nessa hipótese, assim como o movimento se torna zero, a massa também se torna zero. Por outro lado, os fótons possuem movimento e energia variável em relação à frequência e ao comprimento de onda, sugerindo que várias formas do foton têm, cada uma, equivalência de massa diferente. Assim, a equação "E = mc2" mostraria que a massa e o movimento são conceitos indissociáveis e e fundamentalmente substituíveis para toda a matéria.[4]
Fórmula
A equação para a energia do fóton[5] é
X
FUNÇÃO GERAL DO SISTEMA SDCTIE GRACELI.
Onde E é a energia do fóton, h é a constante de Planck, c é a velocidade da luz no vácuo e λ é o comprimento de onda do fóton. Como h e c são ambos constantes, a energia do fóton varia diretamente em relação ao comprimento de onda λ.
Para encontrar a energia do fóton em eV, usando o comprimento de onda em micrômetros, a equação é aproximadamente
X
FUNÇÃO GERAL DO SISTEMA SDCTIE GRACELI.
Portanto, a energia do fóton de comprimento de onda de 1 μm, próximo à da radiação infravermelho, é aproximadamente 1,2398 eV.
Como , onde f é a frequência, a equação da energia pode ser simplificada para
X
FUNÇÃO GERAL DO SISTEMA SDCTIE GRACELI.
Esta equação é conhecida como a relação de Planck-Einstein. Substituindo h por seu valor em J⋅s e f por seu valor em hertz resulta na energia do fóton em joules. Portanto, a energia do fóton à frequência de 1 Hz é 6,62606957×10−34 joules ou 4,135667516×10−15 eV.
Em química e engenharia óptica,
X
FUNÇÃO GERAL DO SISTEMA SDCTIE GRACELI.
é usada onde h é a constante de Planck e a letra grega ν (ni) é a frequência do fóton.[6]
Leis de Wien e de Planck


A figura ao lado mostra o espectro da radiação térmica emitida por corpos a várias temperaturas. Ao incidir sobre um corpo, parte da radiação térmica é absorvida (a), parte é refletida (r), e o resto é transmitido (t). A partir do princípio de conservação de energia, tem-se que:
A Lei de Wien relaciona o comprimento de onda em que há máxima emissão de radiação de corpo negro com uma temperatura e determina que o comprimento de onda emitido diminui com o aumento da temperatura:
- X
- FUNÇÃO GERAL DO SISTEMA SDCTIE GRACELI.
onde:
- é o comprimento de onda (em metros) no qual a intensidade da radiação eletromagnética é a máxima;
- é a temperatura do corpo negro em Kelvin (K), e
- é a constante de proporcionalidade, chamada constante de dispersão de Wien, em Kelvin-metros (K • m).
A Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro e fornece a distribuição dos comprimentos de onda no espectro em função da temperatura. A maior parte da irradiação ocorre em um comprimento de onda específico, chamado de comprimento de onda principal de irradiação, que depende da temperatura do corpo. Quanto maior a temperatura, maior a frequência da radiação e menor é o comprimento de onda:
- X
- FUNÇÃO GERAL DO SISTEMA SDCTIE GRACELI.
onde:
- é a radiância espectral medida em J•s−1•m−2•sr−1•Hz−1
- é a frequência medida em Hertz (Hz)
- é a temperatura do corpo negro medida em Kelvin (K)
- é a constante de Planck medida em Joule por Hertz (J/Hz)
- é a constante velocidade da luz medida em metros por segundo (m/s)
- é o número de Euler
- é a constante de Boltzmann medida em Joule por Kelvin (J/K)
Relacionando com o espectro visível, devido ao comprimento de onda, objetos com temperaturas altas produzem luz de coloração próxima ao azul, enquanto objetos com temperaturas não tão altas podem gerar luz avermelhada (a faixa do espectro seguinte à visível é justamente o infravermelho). Por exemplo, um objeto vermelho quente irradia principalmente ondas longas da faixa visível do espectro (luzes avermelhada e alaranjada). Se for aquecido, passará a emitir menores comprimentos de onda (luzes azulada e esverdeada), e a distribuição das frequências faz a luz parecer branca aos olhos humanos. Esse efeito é chamado de "branco quente". Entretanto, mesmo em temperaturas superiores a 2 000 K, 99% da energia irradiada está na faixa do infravermelho do espectro. Em outros casos, a matéria pode irradiar comprimentos de onda que não podem ser vistos pelo olho humano, como quando a temperatura é relativamente baixa ou extremamente alta.
Lei de Stefan-Boltzmann

A Lei de Stefan-Boltzmann estabelece que a energia total irradiada por unidade de área superficial de um corpo negro, na unidade de tempo (radiação do corpo negro), ou densidade de fluxo energético, indicada por j*, é diretamente proporcional à quarta potência da sua temperatura absoluta:
- [7]
- X
- FUNÇÃO GERAL DO SISTEMA SDCTIE GRACELI.
onde:
- é a energia total irradiada por um corpo negro por unidade de área, medida em Watts por metro quadrado (W / m2)
- é a temperatura do corpo em Kelvin (K)
- é a constante de Stefan-Boltzmann
Comentários
Postar um comentário